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Combining Multiple Results of a Reverse Engineering Algorithm:
Application to the DREAM Five Gene Network Challenge

Daniel Marbach, Claudio Mattiussi, and Dario Floreano*

Laboratory of Intelligent Systems, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

The output of reverse engineering methods for biological networks is often not a single network prediction,
but an ensemble of networks that are consistent with the experimentally measured data. In this paper, we
consider the problem of combining the information contained within such an ensemble in order to (1) make
more accurate network predictions and (2) estimate the reliability of these predictions. We review existing
methods, discuss their limitations, and point out possible research directions towards more advanced methods
for this purpose. The potential of considering ensembles of networks, rather than individual inferred networks,
is demonstrated by showing how an ensemble voting method achieved winning performance on the Five Gene
Network Challenge of the second DREAM conference (Dialogue on Reverse Engineering Assessment and

Methods 2007, New York, NY).
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Introduction

Many reverse engineering methods for biological networks are
based on the fitting of a mathematical model to a dataset of
experimentally observed activity levels of the network compo-
nents. Focusing for the sake of concreteness on gene regula-
tory networks, the input for such a reverse engineering method
is a dataset of gene expression measurements, and the output
is a network that is consistent with the data and possibly some
prior knowledge. However, it is clear that with the typically
noisy and relatively small datasets available, there are in gen-
eral many different networks that are consistent with the data.
Some methods identify a unique “best” network from this en-
semble according to some additional criteria,’ ™ for example
by posing constraints on the connectivity of the network (Fig.
1A). Here, we focus on an alternative approach, which aims
at integrating the information contained within ensembles of
plausible networks that are consistent with the data and the
prior knowledge (Fig. 1B). Even though many methods have
been proposed to construct such ensembles of networks (e.g.,
Monte Carlo techniques,* simulated annealing,®% or genetic
algorithms7) the problem of how to optimally analyze the en-
semble in order to estimate the “true” structure of the under-
lying gene network has received relatively little attention.

In the following, we first motivate the use of ensemble
methods in gene network reverse engineering and then pro-
ceed by formalizing the problem from a probabilistic perspec-
tive. In Section 2, we review existing approaches and describe
a simple voting method that we use to process ensembles gen-
erated with our biomimetic evolutionary reverse engineering
algorithm.®® Finally, we discuss the results of an in silico
benchmark, and the DREAM in vivo Five-Gene-Net reverse
engineering competition. Our results show that in the pres-

ence of noise, predictions obtained from ensembles of networks
are more accurate than any of the individual networks taken
alone.

Ensemble methods. The classic example of an ensemble based
system in decision making is the popular game show “Who
wants to be a millionaire?”. When unsure about a question,
the contestant has the possibility to either call a friend who
he/she knows to be particularly knowledgeable (an “expert”),
or to poll the studio audience, which immediately votes on
the question. At first sight, one might think that the experts
would offer better help than “random crowds of people with
nothing better to do on a weekday afternoon than sit in a
TV studio”.!® It turns out the opposite is true, the audience
giving the correct answer with a surprisingly high accuracy
of about 90%, as compared to only 65% for the experts.'® 1!
This is just one of many examples where ensembles of diverse
individuals outperform a single expert on average.

Consider an ensemble of inferred networks obtained by a
gene network reverse engineering method from a dataset of
gene expression measurements. Each of these networks is a
hypothesis on the true network structure, giving a prediction
on the presence or absence of a regulatory link for every pair
of genes. Now assume that the prediction of links is correct
with probability p > 0.5 (better than random guessing) and
that the errors between the different networks of the ensemble
are uncorrelated. In this case, the prediction obtained from
the ensemble by voting (see next Section) is on average more
accurate than any of the individual networks of the ensem-
ble.?
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Fig. 1 (A) The most common approach in reverse engineering aims at identifying a single “best” network, e.g., the one
with the best data fit and the fewest connections. (B) The approach considered here aims at integrating the information
from ensembles of “plausible” networks in order to make one or several network predictions and estimate the reliability of

these predictions

In practice, the picture is more complex. First, since the

different networks of the ensemble are inferred from the same
dataset, the error of a given link may be correlated between
the networks (e.g., all networks have a tendency to wrongly
predict a given link). Second, there may be a correlation be-
tween the different links within the networks (e.g., in a given
network, there is either link A or link B, but not both). The
simple voting methods typically used in gene network reverse
engineering ignore these correlations. Despite these limita-
tions, we will see that in practice even simple ensemble meth-
ods are sometimes useful to process the output of reverse en-
gineering methods and often allow to improve the accuracy
compared to individual inferred networks of the ensemble.
A probabilistic formalization. The aim of the somewhat sim-
plistic description above was to give an intuitive understand-
ing of the potential advantages of ensemble methods. We
now proceed with a more rigorous probabilistic formalization.
Assume the reverse engineering target is a gene regulatory
network of N genes (henceforth called target network). The
majority of data-fitting reverse engineering algorithms repre-
sents this network by an NxN weight matrix W. The entries
w;; of this matrix give the strength of the regulatory effect of
gene j on gene ¢ (positive for enhancers, negative for repres-
sors, and zero for no interaction). For simplicity, let’s assume
that we want to determine just the weight matrix—additional
parameters of the genes could be treated in an analogous way.
We possess a collection D of noisy observations of the activity
of the network, from which a reverse engineering algorithm
infers (possibly using multiple runs) an ensemble of tenta-
tive networks. Each network has an associated score s that
indicates how well it fits the data. The ensemble is thus a
collection E = {(Wy, sk)}. The problem we consider is how
to process the ensemble E to obtain an estimate of the “true”
weight matrix W.

From a probabilistic perspective, the aim is to estimate
the posterior probability p(W|D, I) for W, given the dataset
D and the prior knowledge I. The ensemble is a collection
of samples of this distribution®'® (Fig. 2). From this per-
spective, the goal of reverse engineering is not only to find the
solution that maximizes the posterior probability, but rather
to integrate the information contained within the complete
ensemble to make predictions on the target network.
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Methods for combining ensembles of inferred networks

Selecting the “best” network from the ensemble. If the quan-
tity and quality of the data is sufficient to uniquely identify
the target network (Fig. 2A), it can be sufficient to sim-
ply select the network W; with the highest score s as the
most plausible network prediction and discard the informa-
tion contained within the rest of the ensemble.>™ %14 For
example, this is usually done when several independent runs
of a stochastic search algorithm converge to this same opti-
mal network, which is then assumed to represent the global
optimum and most plausible network prediction.’

Analysis of the posterior weight distributions. Another popu-
lar approach is to analyze the posterior distribution weight by
weight, i.e., without considering possible correlations between
the weights. The goal is to qualitatively judge how reliable the
different weights are determined by the ensemble. The more
closely the collection of inferred values for a specific weight
w;; are clustered together, the more reliably it is assumed to
be predicted. Whether the ensemble of inferred values for w;;
indicates a reliable prediction or not is often judged qualita-
tively by considering the standard deviation and plotting the
distribution.® 15717

In general, this type of qualitative analysis is done in com-
bination with the strategy described above: the network with
the best score is chosen as the most plausible network predic-
tion, and the posterior weight distributions are used only to
indicate which of the weights are predicted reliably. Instead of
taking the weight values of the best network from the ensem-
ble, one may also consider using the average of the predicted
values® (possibly weighted using the scores sy).

As discussed in the introduction, using the ensemble aver-
age instead of taking simply the best network of the ensemble
often gives a more robust prediction. However, averaging mul-
tiple networks only makes sense if they agree more or less on
a similar network prediction. If the networks of the ensem-
ble are very different, e.g., they fall within two categories as
in Fig. 2C, averaging leads to a meaningless “blur” of alter-
native structures. In this case, a more sophisticated analysis
taking into account the joint probability distributions would
be required.

Majority voting on the network structure. The quantity and
quality of available data is often not sufficient to precisely in-
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Fig. 2 Schematic representation of possible posterior distributions in a reverse engineering problem. The horizontal plane
represents the search space of all possible networks and the vertical axis corresponds to the score (e.g., the posterior prob-
ability). The dots are tentative networks inferred by a reverse engineering algorithm. (A) The data is sufficient to identify
a unique, distinctive global optimum. (B) The problem is underdetermined by the available data—there are many different
networks that score approximately equally well. (C) There are several distinctive classes of networks that fit the data well

fer numerical values for the weights. In this case, one may be
satisfied with predicting only the network structure from the
ensemble and disregard the numerical values of parameters.
A straightforward approach to do so is majority voting (the
same method as the audience polling in the game show men-
tioned above). Every network of the ensemble votes on the
classification of a given link as excitatory (w;; > 0), inhibitory
(wij < 0), or absent (w;; = 0 or smaller than a certain thresh-
old). The type of the link is defined by the majority of the
votes. In addition, the votes could also be weighted by the
scores of the networks.

Unsigned predictions can be treated analogously. For ex-
ample, Hartemink et al. use weighted voting with Bayesian
scores to estimate the probability that a given link is present
in the target network.'®> As for the averaging of the weights
described in the previous section, the underlying assumption
is that regulatory links are predicted independently from each
other.

For signed predictions, the basic voting scheme described
above may not be optimal because it treats the three possible
types of a link (excitatory, inhibitory, and zero) all equal. For
example, assume that two links A and B are predicted to be
excitatory by 80% of all networks of the ensemble. However,
link A is predicted to be zero by the remaining 20%, and link
B is predicted to be inhibitory by the remaining 20%. The
basic voting would predict both links to be excitatory with
equal probability of 0.8. However, one may argue that in this
situation 20% of inhibitory votes should be weighted stronger
than 20% of zero votes because they directly oppose the exci-
tatory predictions. The voting scheme introduced in the next
section addresses this issue.

Signed voting on the network structure. We have devised a
simple voting scheme, which we call signed voting, that is suit-
able for predicting signed regulatory links from an ensemble of
inferred networks. In addition, signed voting estimates a con-
fidence level (reliability) for these predictions. In contrast to
majority voting, excitatory and inhibitory votes cancel each
other out, whereas votes for the absence of a link are neutral.

Assume that network structures are represented by a ma-
trix A, where a;; = 1 if the link is excitatory (w;; > 0),
ai;j = —1 if the link is inhibitory (ws; < 0), and a;; = 0 if the
link is absent (w;; = 0). Suppose we have an ensemble of K
networks, and the structure of the k’th network is defined by
the matrix A" (entries af;). We define the signed vote v;; for

link a;; as

L EkK:I a?j (1)

The vote v;; equals 1 if the corresponding link is excita-
tory in all networks of the ensemble, and -1 if it is inhibitory
in all networks. We now define a confidence level [ that a
given link a;; is excitatory or inhibitory

Haij = +1} = vy (2)
Haij = -1} = —wvy (3)

Thus, the confidence level that a link a;; is excitatory is
1 if there is strong supporting evidence (all networks agree
on the excitatory connection), it is 0 if there is no supporting
evidence (e.g., half of the networks vote inhibitory and half
excitatory, or all vote for a zero connection), and it is -1 if
there is strong evidence to the contrary (all networks vote for
an inhibitory connection).

Note that in contrast to majority voting, the absence of
links is not explicitly predicted. Instead, one assumes that a
connection is zero if there is no strong evidence for an exci-
tatory or an inhibitory link, i.e., if the absolute value of the
signed vote is smaller than some threshold |v;;| < c¢. The
smaller ¢, the more (uncertain) links are included in the fi-
nal network prediction. As in any classification problem, the
choice of the threshold is a tradeoff between the number of
false positives (links that are predicted present, but are ab-
sent in the target network) and false negatives (links that are
predicted zero, but are present in the target network).

Results

We use the same benchmark networks and the same re-
verse engineering method as described in our companion paper
in this volume® as an example for demonstrating the potential
of ensemble approaches in gene network reverse engineering.
Note that the ensemble voting methods used here can in prin-
ciple be applied to ensembles generated by any other suitable
reverse engineering method.

Constructing the ensembles. For generating the ensembles of
tentative networks, we use our biomimetic evolutionary re-
verse engineering method. This method is based on an evo-
lutionary process that bears close similarity with the way in
which gene regulatory networks are thought to evolve in na-
ture.®® Traditional genetic algorithms use direct encodings,
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Fig. 3 (A) In silico target network structure. (B) Normalized gene expression levels—plotted on a logarithmic scale—for
the two time series. The points are the input dataset with log-normal noise of standard deviation 0.5. The lines show the
data fit by the inferred networks of the ensemble. (C) The inferred weights by the networks of the ensemble (the nonzero
weights of the target network are highlighted). Despite a good data fit by the majority of networks, the numerical values
of their weights vary a lot, which indicates that the problem is underdetermined

where the genome is a sequence of discrete or real-valued num-
bers. Our approach employs a biomimetic artificial genome
(Analog Genetic Encoding [AGE]), which encodes the topol-
ogy of the networks using a potentially more evolvable im-
plicit encoding.'®1° AGE abstracts and mimics the biological
encoding of gene networks in nature, thus allowing for the ap-
plication of genetic mutation and crossover operators that are
functionally equivalent to their biological counterparts. The
AGE genome, complemented with a process of artificial evo-
lution, allows us to evolve gene networks in silico according
to a given fitness criterion. The fitness measures how well
the experimental data is reproduced by an evolved network in
simulation, using a sum of squares error.®

AGE is compatible with a wide range of dynamical gene
network models. Here, we use a log-sigmoid model,® which
describes the expression level x; of gene i by

dl’i
i mg - U( Z Wij 25 + bi) — iz, (4)

JER;

with z; = log(xk),

where m; is the maximum transcription rate, b; is a bias that
relates to the basal transcription rate, and \; is the degra-
dation rate. R; is the set of regulators of gene ¢ and w;;
represents the regulatory influence of gene j on gene i. The
activation function is a sigmoid o(y) =1/(1+e7Y).

The topology and all numerical parameters of the log-
sigmoid model are encoded in the AGE genome and evolved
with an evolutionary algorithm for 50’000 generations using
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the same setup as in Ref. [8]. Each run evolves a population of
networks that fit the data well. We found that an evolutionary
run typically converges to a single network structure, i.e., in
the final population the structures of all networks are identical
and only the numerical parameter values vary slightly. This
is expected, because we do not use techniques that enforce
diversity in the population after convergence. Thus, a single
population is not well suited to construct the ensemble in our
case. Instead, we construct the ensemble from multiple runs
of the evolutionary algorithm. From each run, only the net-
work with the best fitness is included in the ensemble. In the
experiments reported here, we did 50 runs for every dataset.

Combining the ensembles and evaluating the predictions. We
used the evaluation protocol of the DREAM2 challenges to
assess the accuracy of network predictions. Inhibitory and
excitatory links were predicted separately in DREAM2. A
confidence level has to be assigned to each of the N? possi-
ble links of the network, indicating the degree of belief that
this link is excitatory/inhibitory. The network prediction is
given by a list of links, ranked according to the confidence
levels, and the performance is measured by the area under
the precision versus recall curve®® (AUC). To achieve a max-
imum AUC score of 1 it is sufficient that the true links of the
target network are ranked first in the list. Note that the confi-
dence levels are exclusively used to order the ranked list of link
predictions and are not taken into account by the evaluation
otherwise.

We compared three strategies to predict the network struc-
ture from the ensemble of inferred networks: (1) simply take
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Fig. 4 Comparison of predictions obtained from the network with the best data fit, signed voting by the complete ensemble,
and signed voting by the top 20% of the ensemble, on three datasets with different levels of noise (standard deviations
0.5, 1, and 1.5). From the precision versus recall curves and the AUC scores in the third column, it can be seen that at
intermediate and strong levels of noise, ensemble voting (especially by the top 20%) predicts the network structure much

more accurately than the network with the best data fit

the network with the best data fit from the ensemble and use
the strength of the connections (the weights w;;) as confidence
levels, (2) use signed voting, and (3) use signed voting, but
allow only the M highest scoring network to vote. For the
results reported here we used M = 10 networks (the top 20%
of the ensemble).

Ensemble voting outperforms individual networks on an in
silico test case. We first tested the ensemble approach on an
in silico five gene network. The structure of this network is
a loop of inhibitory connections (Fig. 3A) and the dynamics
are simulated with the log-sigmoid model (Eqn. 4). We gener-

ated two time series of 15 and 11 samples respectively (same
number of time points as in the quantitative PCR [q-PCR]
dataset described in the next section) and added different lev-
els of log-normal noise (we assume log-normal noise because
o-PCR assesses gene expression on a logarithmic scale®).
Fig. 3B shows a dataset with log-normal noise of standard
deviation 0.5, and the fit by an ensemble of networks, which
were inferred with the biomimetic method described above.
Besides from few outliners that converged prematurely to lo-
cal optima, the majority of the networks fits the data rea-
sonably, without overfitting to noise. However, even though
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Fig. 5 Performance of the biomimetic method, coupled with ensemble
voting, in the DREAM Five-Gene-Net Challenge. The ensemble of inferred
weights is very diverse (first row). Our ranking in the competition is good,
but the accuracy of the predictions of all participants (including us) is not
satisfactory. See main text for discussion

most networks fit the data well, they have very different nu-
merical values for the weights (Fig. 3C). The same is true for
the gene parameters m;, b;, and A; of the model (data not
shown). This indicates that for the biomimetic method used
here, the reverse engineering problem is underdetermined by
this relatively small and noisy dataset.

Still, the inhibitory links of the target network are cor-
rectly predicted (i.e., are put on top of the ranked list) both
by the best network of the ensemble and by signed voting of
the top 20%. Signed voting by the complete ensemble per-
forms slightly worse (Fig. 4, top three rows). Probably, the
information contained in this dataset is sufficient to constrain
the network structures that can fit the data to a relatively
narrow peak in the fitness landscape (Fig. 2A), and this peak
seems to coincide with the true network structure. In this
situation, it is not surprising that the best scoring network
performs as good or better than ensemble voting.

As we add more noise to the data (standard deviation
1.0), the information content is reduced and the distribution
of network structures that can fit the data broadens. Conse-
quently, the individual networks of the ensemble are expected
to be more diverse and predict the target network less ac-
curately. Indeed, the network that fits the data best now
performs poorly in predicting the network structure and has
a low AUC score of 0.5. In contrast, signed voting of the top
20% still correctly predicts the network structure with a per-
fect AUC score of 1. Again, signed voting by the complete
ensemble performs slightly worse (Fig. 4, middle three rows).

The vastly superior performance of the ensemble as com-
pared to the network with the best data fit can be explained
as follows. The individual networks of the ensemble consis-
tently include the five inhibitory links correctly (the signed
vote is close to -1 for these links), but in addition also have
many false positives. However, it seems that the false posi-
tives are sufficiently uncorrelated between the networks of the

6 Marbach et al: Ensemble Methods for Gene Network Inference

ensemble to partly “even out” and obtain a lower confidence
level than the true positives.

When adding excessive noise (standard deviation 1.5), the
network structure is not predicted accurately anymore. Still,
the AUC score is doubled by signed voting of the top 20%
compared to the network with the best data fit (Fig. 4, last
three rows).

The same quality of results was obtained on four different

datasets with log-normal noise of standard deviations 0.5, 1.0,
1.5, and 2.0 (results not shown).
Ensemble voting achieves winning performance in an in vivo
reverse engineering challenge. We have tested ensemble vot-
ing on a real dataset provided for the Five-Gene-Net reverse
engineering challenge of the second DREAM conference (Can-
tone et al., unpublished data). This dataset consists of two
time series of 15 and 11 samples respectively, and was obtained
from an in vivo gene network using q-PCR. The goal of the
challenge was to predict the structure of the network from this
dataset. The true network structure was not disclosed to the
participants prior to the submission of the predictions.

Here, we can not yet include a more detailed descrip-
tion of the in vivo gene network and the challenge because
this information has not yet been published. For this rea-
son, the g-PCR data and the true network structure are not
shown in the discussion of the results below. We will sup-
plement more information as soon as possible on our website
(http://lis.epfl.ch/grn).

We predicted excitatory and inhibitory links using our

biomimetic reverse engineering method coupled with signed
voting by the complete ensemble of inferred networks. As for
the in silico test case, the majority of the runs fits the data
well (data fit not shown, see previous paragraph). The val-
ues of the inferred weights are very scattered (Fig. 5, first
row) and the reverse engineering problem seems to be largely
underdetermined. In contrast to the in silico test case, the
network structure is not accurately predicted and the corre-
sponding AUC scores are low (Fig. 5, second row). Note,
however, that we compared well to other participating teams
(2nd and 1st rank for excitatory and inhibitory predictions
respectively). These results, and in particular possible expla-
nations for the low AUC scores, are discussed in detail in our
companion paper in this volume.® Here, we focus on the other
categories of the challenge and the performance of ensemble
voting.
Undirected and unsigned link predictions. In order to compare
our approach with reverse engineering methods that produce
undirected and unsigned network predictions, we have par-
ticipated also in these categories of the DREAM challenge.
Confidence levels for directed-unsigned links and undirected-
unsigned links were derived from the signed votes of the en-
semble ¢

{|aij| =1} |vij] (dir.-unsig.)
|vi | + [vsil
Hla| =1) or (jassl = 1)} = =5

Our predictions derived in this way are competitive with
methods that directly produce undirected and unsigned pre-

(undir.-unsig.)

@ Note that ensemble voting is done first, and the sign is removed afterwards. Thus, if there are
inconsistent signed predictions for a link (e.g, 50% excitatory, 50% inhbitory), the corresponding
unsigned prediction is still zero. This would not be the case if signs were removed first, and ensemble
voting done afterwards.
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Fig. 6 Same analysis as Fig. 4, but for the in vivo dataset. The first column shows the data fit by the inferred networks
(normalized, negative g-PCR log expression ratios). The target dataset provided by Cantone et al. is not shown because
it is not yet published. As in the in silico test case, the accuracy is significantly improved by ensemble voting

dictions (Fig. 5). At first sight, the AUC score seems to
be very high for the undirected-unsigned predictions as com-
pared to the directed-signed predictions that they were de-
rived from. Is water (inaccurate directed-signed predictions)
made into wine (accurate undirected-unsigned predictions)?
Certainly not. The undirected target network has the same
number of true links, but only half as many possible links as
the directed version. This makes it much easier to obtain a
high AUC score.

Ensemble voting outperforms the network with the best
data fit on the DREAM challenge. After the true structure
of the target network was published on the DREAM website
(http://wiki.c2b2.columbia.edu/dream), we analyzed the per-
formance of ensemble voting on this benchmark. The obser-
vations on the in silico test case with intermediate and strong
levels of noise are confirmed on the real DREAM challenge
dataset. The AUC score is roughly doubled by ensemble vot-
ing compared to the network with the best data fit. Signed
voting by the complete ensemble and by the top 20% perform
approximately equally well (Fig. 6).

Conclusion

As discussed in the introduction, ensemble voting boosts the
performance compared to individual members of the ensem-
ble if the prediction errors are uncorrelated. This seemed
unlikely for an ensemble of networks that are inferred from
the same dataset. Yet, our results show that in practice, the
prediction errors in ensembles of reverse engineered networks
are sufficiently uncorrelated for ensemble voting to drastically
improve the accuracy of predictions from noisy datasets. This
was confirmed both on in silico and real g-PCR data from an
in vivo gene network.

The goal of a reverse engineering algorithm is often seen
to consist in reliably finding the global optimum, i.e., the best
scoring network. Here, we advocate for a different view, where
the goal of the reverse engineering algorithm is to construct
an ensemble of good scoring networks (repeatedly recovering

the global optimum is contrary to this aim). Our results show
that it is possible to make accurate predictions from such en-
sembles even if the problem is underdetermined and many
different networks fit the noisy data equally well.

Compared to generating the ensemble of network predic-
tions in the first place, the complexity of ensemble voting is
negligible. Thus, the scalability to larger networks depends
mainly on the reverse engineering method used to make the
network predictions. In this paper, we have only considered
small networks. Studying the performance of ensemble voting
on different network sizes is a topic of future work.

The ensemble approach holds the promise to improve the
accuracy of any reverse engineering method that can pro-
duce sufficiently diverse network predictions. However, the
biomimetic evolutionary method used here is particularly well
suited for this purpose because it reproduces, at a certain level
of abstraction, the structure and evolutionary constraints of
the biological genome. We hypothesize that this is an effective
approach to incorporate prior knowledge and bias the search
towards biologically plausible solutions.® Ensembles gener-
ated by “replaying the evolutionary tape” may thus provide a
better sampling of the posterior distribution than ensembles
generated with other optimization methods, because the fun-
damental prior that biological gene networks originate from
an evolutionary process is taken into account.

The signed voting method has an intuitive appeal, and
our results show that it works well in practice. However, we
believe that there is a need for more sophisticated tools for a
rational, probabilistic analysis of ensembles of inferred cellular
networks, and we hope that the encouraging results presented
here will stimulate further research in this direction.
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